Свойства нефти

В зависимости от состава в широком диапазоне изменяются физические и химические свойства нефти. Меняется консистенция нефти от легкой, насыщенной газами, до густой тяжелой смолообразной. Соответственно и цвет нефти меняется от светлого до темно-красного и черного. Эти свойства зависят от преобладания в составе нефти низкомолекулярных легких углеводородных соединений, либо тяжелых сложно построенных высокомолекулярных соединений.

Химический состав нефти

С химической точки зрения состав нефти и газа очень прост. Основными элементами, образующими нефть и газ, являются углерод – С и водород – Н. Содержание углерода в нефтях – 83 – 89 %, содержание водорода – 12 – 14 %. В небольших объемах в нефтях содержатся сера – S, азот – N и кислород – О. Углерод и водород присутствуют в нефти в виде множества соединений, называемых углеводородами.

Нефть представляет собой горючую маслянистую подвижную жидкость от светло–желтого до темно–красного, коричневого и черного цвета, состоящую из смеси различных углеводородных соединений. В природе нефть очень разнообразна по своему качеству, удельному весу и консистенции: от весьма жидкой и летучей до густой смолообразной.

Известно, что химические элементы соединяются между собой в определенных соотношениях согласно их валентности. Например, молекула воды – Н2О состоит из двух атомов водорода, имеющих валентность – 1, и одного двухвалентного атома кислорода.

нон

Самым простым по химическому составу углеводородным соединением является метан – СН4. Это горючий газ, являющийся главным компонентом всех природных горючих газов.

Обычное содержание метана в природных газах превышает 90 – 95 %.

сн4

Следующим за метаном соединением является этан – С2Н6,

с2н6

Затем, пропан — С3Н8,

с3н8

бутан — С4Н10, пентан – С5Н12, гексан – С6Н14 и т.д.

Как отмечалось выше, начиная с пентана, газообразные углеводороды переходят в жидкие, т.е. в нефть. Формула пентана продолжает тот же непрерывный ряд углеводородных соединений, относящихся к группе метановых.

с4н10В этой группе все связи углерода задействованы, т.е. использованы на соединение с атомами водорода. Такие соединения называются предельными или насыщенными. Они нереакционноспособные, т.е. не способны присоединять к своей молекуле молекулы других соединений.

Углерод в соединении с водородом способен образовывать бесчисленное множество углеводородных соединений, различающихся своим химическим строением, а, следовательно, и свойствами.

Различают три основные группы углеводородных соединений:

Первая группаметановые (или алканы). Их общая формула СnH2n+2. Именно об этой группе соединений говорилось выше.

Они являются полностью насыщенными, т.к. все валентные связи использованы. Поэтому химически они наиболее инертны, не способные к химическим реакциям с другими соединениями. Углеродные скелеты алканов представляют собой либо линейные (нормальные алканы), либо разветвленные цепи (изоалканы).

цепи

Вторая группанафтеновые (или цикланы). Их общая формула СnH2n. Их основные признаки – наличие пяти – или шестичленного кольца из атомов углерода, т.е. они образуют в отличие от метановых замкнутую циклическую цепь (отсюда — цикланы):

цепи2

Это тоже насыщенные (предельные соединения). Поэтому в реакции они практически не вступают.

Третья группаароматические (или арены). Их общая формула СnH2n-6. Они образованы шестичленными циклами, основанными на так называемом ароматическом ядре бензола – С6Н6. Их отличительная особенность – наличие двойных связей между атомами.

Среди ароматических углеводородов выделяются моноциклические, бициклические (т.е. сдвоенные кольца) и полициклические, образующие многокольцевые соединения типа пчелиных сот.

цепи3

Углеводороды, в том числе нефть и газ, не являются веществами определенного и постоянного химического состава. Они представляют сложную природную смесь газообразных, жидких и твердых углеводородных соединений метанового, нафтенового и ароматических рядов. Но это не простая смесь, а система сложного углеводородного раствора, где растворителем являются легкие углеводороды, а растворенными веществами – прочие высокомолекулярные соединения, включая смолы и асфальтены, т.е. даже и неуглеводородные соединения, входящие в состав нефтей.

Раствор от простой смеси отличается тем, что входящие в него компоненты способны химически и физически взаимодействовать, приобретая при этом новые свойства, которые не были присущи исходным соединениям.

Плотность нефти

В ряду физических свойств нефти важнейшим является плотность или удельный вес. Этот показатель зависит от молекулярного веса слагающих ее компонентов, т.е. от преобладания в составе нефти легких или тяжелых углеводородных соединений, от наличия смолистых примесей, асфальтенов и растворенного газа.

Плотность нефти изменяется в широких пределах от 0,71 до 1,04 г/см3. В пластовых условиях за счет большого объема растворенного в нефти газа плотность ее в 1,2 – 1,8 раза меньше, чем в поверхностных условиях после ее дегазации. В зависимости от плотности выделяют следующие классы нефтей:

  • Очень легкие (до 0,8г/см3);
  • Легкие (0,80-0,84г/см3)
  • Средние (0,84-0,88г/см3)
  • Тяжелые (0,88-0,92г/см3)
  • Очень тяжелые (более 0,92г/см3)

Вязкость

Вязкость нефти – это свойство оказывать сопротивление перемещению частиц нефти относительно друг друга в процессе ее движения. Вязкость определяет степень подвижности нефти. Измеряется вязкость с помощью прибора – вискозиметра. В системе СИ измеряется в миллипаскалях в секунду (мПа•с), в системе СГС  — Пуаз, г/(см•с).

Существует два вида вязкости: динамическая и кинематическая. Динамическая взякость характеризует собой силу сопротивления перемещению слоя жидкости площадью в 1см2 на 1см со скоростью 1см/сек. Кинематическая вязкость представляет собой свойство жидкости оказывать сопротивление перемещению одной части жидкости относительно другой с учетом силы тяжести.

Динамическая вязкость определяется по формуле:

Формула динамической вязкости

где: А — площадь перемещающихся слоёв жидкости (газа); F — сила, необходимая для поддержания разницы скоростей движения между слоями на величину dv; dy — расстояние между движущимися слоями жидкости (газа); dv — разность скоростей движущихся слоёв жидкости (газа).

Кинематическая вязкость также используется в расчетах, она определяется по следующей формуле:

где: μ — динамическая вязкость; ρ — плотность нефти при температуре определения.

В поверхностных условиях нефти делятся на:

  1. маловязкие – до 5 мПа•с;
  2. повышенной вязкости — от 5 до 25 мПа•с;
  3. высоковязкие – более 25 мПа•с.

Меньшей вязкостью обладают легкие нефти, а большей – тяжелые. В пластовых условиях вязкость нефти в десятки раз меньше, чем той же нефти на поверхности после ее дегазации, что связано с ее очень высокой газонасыщенностью в недрах. Это свойство имеет большое значение при формировании залежей углеводородов, т.к. определяет масштабы миграции.

Величина обратная вязкости характеризует текучесть жидкости φ:

Формула текучести

Содержание серы

Содержание серы в нефти — очень важное свойство, влияющее на окислительные свойства нефти. Чем больше содержание серы в нефтях, тем агрессивнее она ведет себя по отношению к металлам, окисляя и разрушая их. В этом смысле действие ее аналогично окислительному действию кислорода. По содержанию серы нефти делятся на:

  1. Малосернистые – до 0,5 %;
  2. Сернистые — от 0,5 до 2,0 %;
  3. Высокосернистые – более 2 %.

Парафинистость нефти

Это еще одно важное свойство нефти, влияющее на технологию ее добычи и транспортировки по трубопроводам. Парафинистость возникает в нефтях за счет содержания в них твердых компонентов – парафинов (от С17Н36 до С35Н72) и церезинов (от С36Н74 до С55Н112).

Содержание их достигает иногда от 13 до 14 %, а на месторождении Узень в Казахстане – 35 %. Высокое содержание парафина чрезвычайно затрудняет добычу нефти, т.к. при вскрытии пласта и подъема нефти по трубам происходит непрерывное снижение давления и температуры. При этом парафин способен кристаллизоваться и выпадать в твердый осадок, парафинируя как поры в самом пласте, так и стенки НКТ, задвижек и всего технологического оборудования. Чем ближе температура кристаллизации парафина к температуре пласта, тем скорее и интенсивнее наступает процесс парафинизации.

По содержанию парафинов нефти делятся на:

  1. Малопарафинистые – менее 1,5 %;
  2. Парафинистые – от 1,5 до 6,0 %;
  3. Высокопарафинистые – более 6,0 %.

Газовый фактор

Газосодержание или газовый фактор – это количество газа в 1м3 (или на 1т) дегазированной нефти, т.е. газовый фактор – это количественный показатель того, какое количество газа было растворено в нефти в пластовых условиях, способное перейти в свободное состояние при извлечении нефти на поверхность.

Газовый фактор может достигать 300 – 500 м3/т, но чаще – в пределах 30 – 100 м3/т. Встречается и менее — 8 – 10 м3/т, например, тяжелые нефти Ярегского месторождения Ухтинского района имеют газовый фактор 1 – 2 м3/т.

Давление насыщения

Давление насыщения (или начала парообразования) – это давление, при котором газ начинает выделяться из нефти. В природных условиях давление насыщения может быть равным пластовому или меньше его.

В первом случае весь газ будет растворен в нефти, а нефть — насыщена газом. Во втором случае нефть будет недонасыщена газом.

Сжимаемость нефти

Сжимаемость нефти обусловлена ее упругостью и измеряется коэффициентом сжимаемости – βН.

Формула сжимаемости нефтигде V – исходный объем нефти, м3;

∆V – изменение объема нефти, м3;

∆р – изменение давления, МПа.

Коэффициент сжимаемости характеризует величину изменения объема пластовой нефти при изменении давления на 0,1 МПа. Этот коэффициент учитывается на ранних стадиях разработки, когда упругие силы жидкостей и газов еще не растрачены и поэтому играют заметную роль в энергетике пласта.

Коэффициент теплового расширения:

Коэффициент теплового расширения где Δt0 — изменение температуры на 1 0С.

Коэффициент теплового расширения показывает, на какую часть первоначального объема изменяется объем нефти при изменении температуры на 1 0С. Этот коэффициент используется при проектировании и применении тепловых методов воздействия на пласт.

Объемный коэффициент нефти

Этот коэффициент показывает, какой объем занимает в пластовых условиях 1м3 дегазированной нефти за счет насыщения ее газом.

 Формула объёмного коэффициента

где bН – объемный коэффициент пластовой нефти, доли единицы;

Vпл – объем нефти в пластовых условиях, м3;

Vдег – объем той же нефти в поверхностных условиях после ее дегазации, м0;

ρпов – плотность нефти в поверхностных условиях, т/м3;

ρпл – плотность нефти в пластовых условиях, т/м3.

Объемный коэффициент обычно больше 1, как правило, находится в пределах 1,2–1,8, но иногда достигает 2–3 единиц. Объемный коэффициент используется при подсчете запасов и при определении коэффициента нефтеотдачи пласта.

Усадка нефти и пересчетный коэффициент По объемному коэффициенту можно определить усадку нефти при извлечении ее на поверхность – И, а также пересчетный коэффициент — Θ.

Последний используется в формуле подсчета запасов объемным методом. Пересчетный коэффициент Θ – есть величина обратная объемному коэффициенту – bH.

Формула пересчетного коэффициента

Как видно, эта формула представляет собой перевернутую формулу объемного коэффициента. Именно она учитывает уменьшение объема нефти (ее усадку) при переходе от пластовых условий к поверхностным.

Температура застывания

Температура застывания нефти — это та температура, при которой охлажденная в пробирке нефть не меняет свой уровень при наклоне в 45º. Температура застывания и плавления нефтей разнообразна. Обычно нефть залегает в пласте в жидком состоянии, но, некоторые из них густеют даже при небольшом охлаждении. Температура застывания растет одновременно с возрастанием содержания в ней твердых парафинов и уменьшением содержания смол. Смолы оказывают противоположный эффект — с увеличением их содержания температура застывания уменьшается.

Оптические свойства нефти

Оптическая активность выражается в способности нефти вращать плоскость поляризованного луча света вправо (редко влево). Оптически активные вещества образуются при жизнедеятельности организмов, и оптическая активность нефти свидетельствует о ее генетической связи с биологическими системами. Основными носителями оптической активности в нефти являются ископаемые молекулы животного и растительного происхождения — хемофоссилии. Нефти из более древних отложений менее оптически активны по сравнению с нефтями из более молодых пород.

Нефти светятся при облучении ее ультрафиолетовыми лучами, т.е обладают способностью к люминесценции. Люминесцируют смолы в не люминесцирующих в основном соединениях — углеводородах. Люминесцирующие вещества имеют определенные спектры цветов люминесценции (бурые, голубые, желтые и др.) и интенсивность свечения, зависит от концентрации. Легкие нефти имеют голубой и синий цвета люминесценции, тяжелые — желтый и желто-бурый.