Пластовые воды нефтяных и газовых месторождений

Пластовые воды – обычные спутники нефтяных и газовых месторождений. Воды встречаются либо в тех же пластах-коллекторах, которыми контролируются нефтяные и газовые залежи, либо образуют самостоятельные чисто водоносные пласты. В первом случае вода занимает пониженные части пластов – коллекторов, подстилая залежи нефти и газа. Во втором случае водоносные пласты не имеют связи с залежами и располагаются выше и ниже продуктивных.

Классификация пластовых вод по способу образования

По своей генетической природе воды месторождений делятся на несколько форм:

  1. Остаточные или молекулярно связанные воды, обволакивающие минеральные частицы пород, адсорбированные в капиллярных и субкапиллярных пустотах нефтяного пласта.
  2. Седиментационные воды это воды, залегающие в пласте с момента отложения осадка, т.е. синхронные времени формирования самой породы.
  3. Инфильтрационные воды, т.е. проникшие в пласт извне за счет подпитки атмосферными осадками, водами рек, озер и морей. Области питания находятся в горах на значительном удалении от глубоко погребенных водонефтяных пластов. Эти пласты в горных системах обнажены и подвержены любым атмосферным явлениям, в т.ч. и проникновению поверхностных вод в пласты – коллекторы.
  4. Элизионные воды это воды, попадающие в пласт-коллектор путем выжимания поровых вод из уплотняющихся осадков, в т.ч. неколлекторов за счет роста геостатического давления или тектонических напряжений.
  5. Воды технические или искусственные, специально закачиваемые в пласт для поддержания пластового давления и более полного вытеснения нефти водой.

Классификация пластовых вод по месту нахождения

В промысловом деле воды нефтяных и газовых месторождений делятся на пластовые напорные и технические. Среди подземных вод особое место занимают ненапорные грунтовые воды, которые в отличие от пластовых являются пресными или слабо минерализованными. Они имеют распространение лишь в приповерхностных слоях земной коры выше первого водоупорного горизонта.

Пластовые напорные воды по отношению к нефтеносному пласту делятся на краевые, подошвенные, промежуточные, верхние и нижние, а также воды тектонических трещин.

Пластовые воды (по М.А.Жданову)

Пластовые воды (по М.А.Жданову). Вода: 1 – со свободной поверхностью (ненапорная), 2 – верхняя относительно нефтеносного горизонта, 3 – краевая приконтурной зоны (нижняя краевая напорная), 4 – нижняя относительно нефтеносного горизонта (нижняя напорная), 5 – подошвенная, 6 – глубинная, восходящая по сбросу, 7 – промежуточная (Э.О. – эксплуатационный объект), 8 – верхняя краевая, 9 – нефть, 10 – глины, 11 – глубина уровня, h – напор.

Краевые пластовые воды занимают пониженные части пласта и подпирают нефтяную залежь по внутреннему и внешнему контурам, образующим в плане кольцеобразную форму.

Подошвенные воды подпирают залежь по всей её площади, включая и сводовую часть, образуя сплошное зеркало ВНК или ГВК.

Промежуточные воды залегают внутри нефтеносного пласта или между пластами, объединенными в один эксплуатационный объект.

Верхние и нижние воды приурочены к чисто водоносным пластам, не зависимым от продуктивных и залегающим выше или ниже последних.

Воды тектонических трещин циркулируют по плоскостям разломов из высоконапорных (как правило, более глубоко залегающих) в низконапорные. Они способны обводнять головные участки нефтеносных пластов, оттесняя нефть со сводовых частей залежи к крыльевым периферическим зонам.

При наличии краевых вод, подпирающих нефтяную или газовую залежь, различают внешний (по кровле пласта) и внутренний (по подошве пласта) контуры. В пределах внутреннего контура нефтеносности пласт содержит нефть по всей его толщине от кровли до подошвы. В плане это части залежи отвечает нефтяная зона, где скважинами пластовая вода не вскрывается.

Между внешним и внутренним контурами  ВНК располагается приконтурная зона залежи, где нефть является водоплавающей, т.е. скважинами вскрываются вверху – нефть, а внизу – вода. За пределами внешнего контура пласт полностью водонасыщен, нефть отсутствует. Таким образом, граница залежи проводится по внешнему контуру нефтеносности.

Схема строения пластовой нефтегазовой залежи

Схема строения пластовой нефтегазовой залежи. 1 – газ; 2 – нефть; 3 – вода; 4 – внешний контур нефтеносности; 5 –внутренний контур нефтеносности; 6 – внешний контур газоносности; 7 –внутренний контургазоносности. А – газовая зона; Б –нефтегазовая зона; В – нефтяная зона; Г – водонефтяная зона; В – законтурная зона.

В процессе добычи нефти, по мере истощения запасов в залежи, происходит продвижение контуров от ее периферии к центру. Задачей рациональной разработки залежи является обеспечение равномерного их продвижения по всей площади. При неравномерном продвижении контуров образуются языки обводнения, что грозит появлением отшнуровавшихся разрозненных целиков нефти, дальнейшая добыча из которых практически невозможна.

Схема расположения языков обводнения и целиков нефти

Схема расположения языков обводнения и целиков нефти. 1 – языки обводнения; 2 – целики нефти.

При наличии подошвенных вод, т.е. в том случае, когда пластовая вода подпирает залежь нефти по всей ее площади становится необходимым завершать бурение скважин до вскрытия ими водоносной части пласта, т.е. выше ВНК. Это необходимо для предотвращения появления конусов обводнения, борьба с которыми весьма затруднена. В таких случаях нефть оттесняется от забоев скважин пластовой водой, что также может привести к появлению целиков нефти.

Схема расположения конусов обводнения при наличии подошвенных вод (по Жданову М.А.)

Схема расположения конусов обводнения при наличии подошвенных вод (по Жданову М.А.). 1 – нефть, 2 – вода, 3 – глинистый прослой, 4 – цементная пробка, К.о. – конусы обводнения.

Классификация вод по химическому составу В.А. Сулина

Пластовые воды нефтяных месторождений отличаются высокой насыщенностью химическими элементами разного состава, среди которых преобладают Na, K, Mg, Ca, Fe, Al, Si, O, Cl, C, S, N, H, Br, I. Эти элементы находятся в воде в виде растворенных в ней солей различных кислот:

  • Соляной (NaCl, KCl, MgCl2, CaCl2),
  • Серной (CaSO4, MgSO4, Na2SO4),
  • Угольной (Na2CO3, NaHCO3, K2CO3, KHCO3, CaCO3, MgCO3),
  • Сероводородной (FeS, CaS).

В составе вод всегда растворены значительные объемы газообразных составляющих, среди которых главная роль принадлежит азоту (N2), углекислому газу (CO2) и сероводороду (H2S).

Воды нефтяных месторождений отличаются высокой минерализацией, преимущественно хлоридно–натриевым, хлоридно–кальциевым или гидрокарбонатно–натриевым составом, отсутствием сульфатных соединений, высоким содержанием J, Br, NH4, H2S, наличием солей нафтеновых кислот и растворенных углеводородных газов.

Минерализация или насыщение подземных вод различными солями и элементами происходит в процессе их взаимодействия с горными породами, нефтью и газом при воздействии также высоких температур, каталитических свойств пород и микробиологических процессов.

Химический состав и физические свойства пластовых вод имеют большое значение при разработке залежей нефти и газа, т.к. от них зависит течение многих процессов в пласте.

В нефтяной геологии признание получила классификация подземных вод В.А.Сулина, в которой по трем основным коэффициентам в процент–эквивалентной форме выделены 4 генетических типа подземных вод .

Классификация пластовых вод В.А. Сулина

Классификация пластовых вод по В.А. Сулину

Физические свойства пластовых вод

Минерализация воды – это общее содержание в воде растворенных солей. В пластовых водах нефтяных и газовых месторождений минерализация изменяется в достаточно широких пределах: от 1 г/л (пресные воды) до 400 г/л и более (крепкие рассолы). От минерализации и химического состава вод напрямую зависят их основные физические свойства.

Минерализованные воды имеют очень высокую моющую способность, поэтому они являются основным рабочим агентом для закачки обратно в продуктивный пласт с целью поддержания пластового давления для достижения максимального КИН. В то же время у воды с повышенной минерализацией имеются и отрицательные стороны – выпадению солей в призабойной зоне пласта, что способствует понижению проницаемости и появлению положительного скин-фактора.

Плотность воды тесно связана с минерализацией, а в пластовых условиях еще с давлением и температурой. Плотность пластовых вод на поверхности всегда более 1 г/см3, а в рассолах достигает более 1,3 г/см3. В пластовых условиях плотность воды обычно ниже на примерно на 20%, в связи с повышенной температурой внутри продуктивного пласта.

Вязкость воды в пластовых условиях резко понижается и обычно ниже вязкости нефти. Главным образом она зависит от пластовой температуры, в меньшей степени от минерализации и химического состава. Благодаря низкой вязкости в сравнении с нефтью, вода обладает большей подвижностью и нередко оттесняет нефть от забоя. Отсюда возникают языки и конусы обводнения.

Растворимость газов в воде значительно ниже их растворимости в нефти. С повышением минерализации вод растворимость газа в них снижается. Газосодержание в воде незначительно: 0,2 –2 м33.

Электропроводность. Пресные воды обладают высоким электрическим сопротивлением и являются диэлектриками. Минерализованные воды имеют низкие удельные сопротивления токам и являются отличными проводниками. Сведения об удельном электрическом сопротивлении пород, насыщенных пластовой водой или нефтью применяются при интерпретации материалов, полученных с помощью электрических методов ГИС.

Поверхностное натяжение – важное свойство пластовой воды, также зависящее от химического состава. С данным свойством связана вымывающая способность воды, которую необходимо учитывать и возможно регулировать при заводнении месторождений. При малом поверхностном натяжении вода обладает высокой способностью промывать пласты и выталкивать из них нефть. Поэтому при использовании для обратной закачки в пласт пластовая вода подвергается специально обрабатывается химическими реагентами на УПН (УПСВ) для понижения ее поверхностного натяжения.

Сжимаемость воды мала, но по мере насыщения воды газом сжимаемость ее растет.

Температура воды практически всегда сопоставима с геотермической ступенью, присущей для данной местности. Бывает, что температура пластовой воды сильно расходится с температурой, местной геотермической ступени. Это свидетельствует либо о появлении тектонических вод по зоне разлома, либо о возможных межпластовых перетоках из-за разницы в пластовых давлениях. Замеры температур в скважинах имеют огромное значение для контроля разработки месторождений и технического состояния скважин.